
Models for Replica Synchronisation and Consistency in a Data Grid

Dirk Düllmann, Wolfgang Hoschek, Javier Jaen-Martinez, Ben Segal
CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland

{Dirk.Duellmann, Wolfgang.Hoschek, Javier.Jaen-Martinez, Ben.Segal}@cern.ch

Asad Samar
California Institute of Technology, Pasadena, CA 91125, USA

Asad.Samar@cern.ch

Heinz Stockinger, Kurt Stockinger
CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland

Inst. for Computer Science and Business Informatics, University of Vienna, A-1010 Vienna, Austria
{Heinz.Stockinger, Kurt.Stockinger}@cern.ch

Abstract

Data Grids are currently proposed solutions to large
scale data management problems including efficient file
transfer and replication. Large amounts of data and the
world-wide distribution of data stores contribute to the
complexity of the data management challenge. Recent ar-
chitecture proposals and prototypes deal with replication of
read-only files but do not address the replica synchronisa-
tion problem. We propose a new Grid service, called Grid
Consistency Service (GCS), that sits on top of existing Data
Grid services and allows for replica update synchronisation
and consistency maintenance. We give models for different
levels of consistency provided to the Grid user and discuss
how they can be included into a replica consistency service
for a Data Grid.

1 Introduction

Recently, Data Grids [2] have become an interesting and
popular domain in the Grid community. In particular, the
management of huge amounts of data is one of the ma-
jor scientific challenges to be addressed by [14]. A typi-
cal Data Grid can have Terabytes or even Petabytes of data
distributed and replicated all around the globe. In this pa-
per, we concentrate on models for high-level replication ser-
vices, namely services for maintaining replica synchroni-
sation and consistency. Such services can be built on top
of existing replication services for fast file transfer (e.g.
GridFTP [9] and file meta-data management (i.e. replica
catalogues [2])). This is in-line with Grid architectural

considerations [8] where replica consistency issues concern
high-level services that need to be adapted to the applica-
tion environment. Lower level services, on the other hand,
guarantee efficient storage, retrieval of replica location in-
formation, and efficient file transfer.

Since replication can be interpreted in many different
ways, we define that high-level replica management deals
with consistency aspects of replicas. A replica is not just
a simple copy of a file. For instance, one might copy a
file into local, temporary disk space without making the file
available to the Grid. This is what we call a simple copy.
As regards a replica, two or more physical file instances
of the same logical file have to be synchronised and some
meta information is kept that knows about both replica lo-
cations. Update operations have to be consistently propa-
gated to other replicas. We claim that an efficient replica-
tion mechanism is driven by two factors: knowledge about
the data and use cases - both are specific to the application
domain. We guide our replication discussion by High En-
ergy Physics requirements and propose replica consistency
models that are applicable to several Data Grids.

In general, the data consistency problem deals with keep-
ing two or more data items, in our case replicas, up to date,
i.e. consistent. A strict approach guarantees that all replicas
are always 100 percent in sync and thus fully consistent.
Due to the locking overhead of keeping huge amounts of
distributed data in sync [11], 100% consistency is a very im-
practical solution for a Grid environment. Thus, if knowl-
edge about the data and user requirements (use cases) are
available, one can relax this strict consistency requirement
and allow certain parts of the data to be out of sync for a
particular amount of time. For instance, a site A in a Data



Grid says explicitly that newly created files at other sites
B, C, and D have to be transferred to the site A within two
days. This means the replica creation process can be done
within a 48 hour time frame. Within this period the state of
physical files can be inconsistent. Another example is that
writable replicas have to be updated and synchronised every
10 minutes. As a third example, we mention that updates of
meta information might be 100 percent synchronised. This
clear need for different consistency models is the key input
to our paper and guides the proposed solutions.

The paper is organised as follows. Section 2 discusses
the current state-of-the-art Grid architecture for replication
issues as it is also used in recent projects. The High En-
ergy Physics data model and use cases are described in the
next section in order to put the replication effort into the
right context. Our proposed Grid architecture for replica
synchronisation is given in Section 4. It is mainly based
on dynamic elements in a Data Grid. Section 5 discusses
some general replication issues like the level of replication
and a/synchronous replication mechanisms. Our main mod-
els are discussed in terms of consistency levels in Section 6
and merged with replication protocols in the following sec-
tion. We finally conclude our paper and give some future
work.

2 Current Data Grid Replication Architec-
ture

Distributed systems and distributed database manage-
ment systems provide several generic replication models
that mostly work well for local-area replicated data. Real-
time applications with high requirements for data consis-
tency make use of these models [15]. In emerging Data
Grid applications, we can identify some fundamentally dif-
ferent features and application requirements in contrast to
real-time database applications like banking or finance ap-
plications. For a more detailed discussion on the state-of-
the-art in distributed database replication refer to [23].

• Data is distributed and replicated to world-wide dis-
tributed sites: wide-area replication rather than local-
area replication (in relatively small environments).
This has an implication on data consistency since
wide-area networks in general have longer latencies.

• Most of the data is read-only. If updates occur,
general real-time update propagation mechanisms are
not needed (or needed only in relatively small sub-
environments).

• A general replication system is required that sits on top
of a database management system or data store since a
broad user community will use several different stor-

Replica Manager

Replica Catalogue

File Transfer

Figure 1. Architecture of the Replication Ser-
vices in a Data Grid

age technologies. The approach should be applicable
to several systems but not necessarily combine them.

Thus, a Data Grid cannot rely on a replication strategy
provided by a single database management system like Or-
acle [17] or Objectivity [16] but needs to build synchroni-
sation models and tools that are applicable to a large variety
of heterogeneous data stores. Since Grid technology is mid-
dleware technology, a replica update synchronisation sys-
tem has to be provided as middleware between the end-user
application and the actual data stores. In principle, there are
possible candidates in commercial systems like Oracle or
Objectivity but they are either not specialised for wide-area
replication or only for a homogeneous database manage-
ment system.

A general architecture for a Data Grid is given in [8]. The
building blocks and services of the replication sub-system
are illustrated in Figure 1.

A clear separation of services allows for a flexible sys-
tem. Currently, data replication in Grids mostly deals with
file replication. We start off with this model and enhance it
by our proposed replica synchronisation service.

The lowest layer of the architecture above deals with ef-
ficient data transfer between two sites. For file transfers,
several protocols exist: FTP [18] and HTTP [7] are the
most common file transfer protocols. In the Grid commu-
nity, GridFTP [3] - an enhanced version of FTP - is a viable
candidate for a new standard. Consequently, in our replica-
tion model we assume that the file transfer problem is suffi-
ciently dealt with and we build on top of it.

Replica catalogues are responsible for locating physical
files and mapping of logical filenames to physical instances.
The replica manager layer is responsible for efficiently cre-
ating, moving and deleting replicas in the Grid. In detail,
files are copied from one site to another and registered in
the replica catalogue. This makes files available to the Grid.

This architecture works well for static environments
where files are read-only, i.e. the architecture satisfies only



a particular use case: read-only data. Prototypes that im-
plement parts of the architecture have been made [21] and
show good results, i.e. the software satisfies the needs in a
production environment.

We now go a step further and introduce more dynamic
elements into the architecture: files and meta-data can be
updated. There is a clear need for a Grid service that takes
care of these requirements and provides efficient solutions.
The main contribution of this paper is to provide first mod-
els for replica synchronisation in a Data Grid. Before a
more detailed discussion on the proposed service, we anal-
yse the dynamic elements in the Data Grid. We claim that
efficient replication can only be reached if the environment,
the data model and possible use cases are well understood.
In the next section we discuss the High Energy Physics data
model and use cases as an example for a Data Grid.

3 The High Energy Physics Data Model and
Use Cases

Current Data Grids like DataGrid [6], GriPhyN [12] and
Particle Physics Data Grid (PPDG) [19] support several sci-
entific application domains. They all have in common the
High Energy Physics (HEP) community that we want to use
as an example for our replication models.

3.1 Data Model

The HEP data model foresees different types of data with
essentially different characteristics and requirements as re-
gards data access and data management. Briefly, raw data
is the original data that is produced by a particle physics
detector. This data is further processed and so called re-
constructed data are produced. The reconstructed data can
further be divided into Event Summary Data (ESD) and
Analysis Object Data (AOD). The smallest data type we
can distinguish is the so called tag data that stores sum-
mary information about raw and reconstructed data objects.
In general, all these different types of data vary in size and
are read-only. Additional data types are event meta-data
(read/write) and calibration data (read/write).

3.2 Use Cases

The following use cases influence the way data is ac-
cessed, distributed and replicated.

3.2.1 End User Physics Analysis

End user physics analysis will be one of the main jobs of a
physicist trying to understand the physics properties of the
data that is produced by the particle detector. Even though
this kind of analysis will be mainly based on data like tag,

AOD and ESD, it will also require various types of meta
data like detector calibration data, geometry data and in-
dices to support fast data access. Output data will have
different meta data and may be integrated with the “main
store”, i.e. files have to be registered in a replica catalogue.

This use case can be regarded as User Driven Replica-
tion: in other words, the user has the knowledge of what
his analysis job is doing and should decide how and what to
replicate. Besides, he might not want any type of synchro-
nisation between files and the master copy. (Note that the
master copy is the original file created by a data production
process.) An automatic replication procedure is not possi-
ble here since not all information is available in advance for
automatically triggering a replication process.

Although most of the data that the end-user deals with is
read-only, the meta-information related to this bulk data is
modifiable. The changes in this meta-data have to be prop-
agated to the different replicas and so we need at least some
level of consistency between them.

3.2.2 Distributed Simulation

Another typical use case is distributed simulation. Several
sites in the Data Grid generate simulated data according
to some physics algorithms. This so-called Monte Carlo
simulation is characterised by small amounts of input data
(mainly parameters, geometry etc.) and larger amounts of
output data (also read-only). The output needs to be inte-
grated into the main store of replicas.

We refer to this simulation process as Data Shipping:
A production centre produces read-only data (single-writer
data). This data is replicated (shipped) to other sites that
in turn produce and replicate (ship) data. We can outline
the following different requirements and thus policies (see
Section 5.1) for replication:

• Site A needs full synchronisation of its replicas with
all the data produced at site B.

• Site C needs full synchronisation of its replicas with
only a subset of the data that is produced at site D.

• Sites E, F, G request asynchronous replication (repli-
cation on demand) of site H.

4 A Replica Consistency Service

In this section the proposed replica consistency service
with respect to the update problem is discussed.

4.1 Dynamic Elements and Consistency

An important point for update synchronisation models is
to understand the nature of updates, which data is affected



and how this influences the end-user application. Based on
the general Grid architecture in Section 2 and the discus-
sion in the previous section, we can identify the following
dynamic factors in a Data Grid:

• File and replica catalogues are updated whenever new
files are introduced, deleted or moved. If a replica cat-
alogue is a single, central service using a conventional
database management system (DBMS) for storing log-
ical and physical file information, the DBMS can take
care of the update problem. If the replica catalogue
is distributed or replicated itself, the individual cata-
logues need to be synchronised. One example: ev-
ery time a new logical file is introduced, the filename
needs to be unique within all replicas of the catalogue
- a clear case for synchronisation. We regard this as
meta-data synchronisation since the replica catalogue
is meta-information on the actual data. In the scope of
this paper, we assume that this meta-data replication
is taken care of by the replica catalogue service and
concentrate on the synchronisation of the actual data.
However, the problem to be addressed is almost the
same. For instance, the replica catalogue system can
use the consistency service to keep replica catalogues
consistent.

• Update of file contents. This is the classical replica up-
date problem. Replicated data is updated at one place
and the changes are propagated to all other replicas.
In detail, a file is opened for write access, bytes are
added or changed and closed afterwards. Within a cer-
tain amount of time these changes have to be visible
at all replicas in order to have a consistent view of the
data. Possible solutions are given in the next section.

4.2 The Consistency Service in Detail

Replica update propagation is done in order to guaran-
tee a consistent view of replicated data. We define a service
that provides update synchronisation as a consistency ser-
vice and regard it as an additional Grid service. An applica-
tion that wants to update data and propagate these updates to
other sites in the Data Grid needs to use this service. Sites
that have subscribed to the service will be included in the
update synchronisation process.

A consistency service (see Figure 2) needs to take into
account different replication schemes and consistency mod-
els ranging from fully synchronised data to loosely synchro-
nised sites where updates and changes are visible only af-
ter a few minutes, hours or even days. Thus, the end-user
can choose a consistency level that satisfies his application
requirements. Possible consistency levels are discussed in
Section 6.

Replica Manager

Replica Catalogue

Consistency Service

File Transfer

Figure 2. A Replication Architecture including
the consistency service.

The consistency service shall provide general consis-
tency levels and interfaces but the actual service implemen-
tation is tightly coupled with the underlying data store and
data model. Whereas in a relational DBMS a standard query
interface like SQL can be used to handle updates at a lo-
cal site and propagate them efficiently to all replicas, a data
store like Objectivity or Root does not provide such a high-
level interface and thus requires more sophisticated update
mechanisms. Some proposals can be found in [23].

To sum up, when a database management system is
used locally, the DBMS has to guarantee local consistency
whereas the replication middleware has to take care of
global consistency in the Data Grid. Thus, global consis-
tency deals with propagation of update information to re-
mote sites in the Grid.

5 General Replication Issues

5.1 Replication Protocols, Policies and Simplify-
ing Boundary Conditions

In principle, two mainly different replication approaches
are known: synchronous and asynchronous replication.
Whereas synchronous replication aims for keeping all the
replicas permanently in sync, asynchronous replication al-
lows for a certain delay in updating replicas. Based on
the relative slow performance of write operations in a syn-
chronously replicated environment (due to the strict two-
phase commit protocol that is used within a database trans-
action [11]), the database research community is search-
ing for efficient protocols for asynchronous replication ac-
cepting lower consistency. For a detailed discussion on
a/synchronous replication refer to [23].



Several replication use cases are possible and the amount
of read and write access to data influences the replication
policy. It is very likely that various boundary conditions
will affect the replication and allow for simplifications.

read-only data: The simplest case is if data is read-only,
where data may be copied (1) at any point in time (2) from
any replica to any other place. This requires no locking
nor any other coupling (except for the replica catalogue) of
replicas.

Note it is probably very hard to ever remove the read-
only property from a file in a running system without risking
to compromise readers. Therefore, applications would be
required to insure that data will never need any change.

writable data: Once we allow write access to the data, it
is important to have a clear policy that defines who is al-
lowed to write/change data. If ownership is assigned to files
(replicas), one policy can be that only the owner is allowed
to modify the original version of a file (master copy). For
a data item which can be updated (writable) we distinguish
between permanent and varying ownership.

• well defined file ownership (”master-slave case”):
Only one well defined entity in the system (e.g. one
user, or a production team at one site) is allowed to
modify a particular piece of data (e.g. a file). As a re-
sult, the replication is not symmetric any more between
all replicas in the system. The process of determining
which is the most up-to-date version in the system is
not required. Only the information “who is the owner”
needs to be propagated to all slave replicas. In case
of data access only one well defined node needs to be
contacted to obtain the most recent version of the data.

This is only true for write operations. For a read ac-
cess, any replica can be selected since the master-slave
approach guarantees that all copies are up-to-date [23].
In detail, all write and update requests are forwarded to
the master which in turn is responsible for synchronis-
ing all the slaves. Read requests can be served by any
replica [23].

• varying writers (no central control of replicas):
This is the most general and complex case. Several
update operations need global agreement between all
replicas and will also try to contact all replicas to ob-
tain a quorum. Quorum systems are commonly used as
a mechanism to get the right, for example, to update a
replica. The current distributed database research pro-
poses several solutions to this problem. For a more
detailed discussion refer to [23].

5.2 The Level of Replication

There exist two different replication policies as regards
the amount of data to be replicated: full and partial repli-
cation. A fully replicated system replicates all data items
to all participating sites. In a partially replicated environ-
ment only a subset of all data items is replicated to some
or all sites. Furthermore, we can distinguish between the
replication of:

• a complete site (we assume that a site is holding a finite
number of data items or files)

• a consistent subset of files of a site (files that are logi-
cally connected)

• individual files (files that are independent of each
other)

• collections of individual objects in files (these objects
may or may not be consistent subsets)

• other exchange file formats

The following question can be raised: “Can we copy just
single, independent files or do we need to take into account
that they are interrelated?”. In principle, it is the individ-
ual application that decides what data has to be replicated.
However, replicating individual sets of objects in a file can
cause, for instance, logical connections between the objects
to get lost (broken links, dangling pointers). A good replica-
tion mechanism guarantees that the application user should
not need to care about what data is needed and whether it is
in a safe state or not.

We would not always like to deliver the full set of reach-
able objects to the users. Depending on their object model
this could be impossible anyway since this approach might
result in very large volume transfers. In the worst case, a
complicated object and association structure has relations
to all files and thus all files need to be replicated in order to
navigate through all possible associations.

6 Data Consistency Levels Delivered to Grid
Users

In the following section we describe several possible
consistency levels and discuss their usefulness. Database
theory [10] provides valuable background and solutions to
some of the problems. Our discussion here is guided by
database transaction theory including locking for establish-
ing consistent data. Higher consistency levels including
transactional integrity across a multi-user, multi-file store
typically require using a database system like [16] or [17].



We therefore also discuss how replication could be inte-
grated with database management systems to retain some or
all of their consistency guarantees.

For non-database stores, which may not provide transac-
tional consistency or may not support concurrent read/write
access (e.g. ROOT [25]) , some of the following consis-
tency levels may not be applicable. Their replication model
is often based on the simplifying condition (see Section 5.1)
of assuming completely read-only data which is sufficient
for many applications.

It should also be pointed out that several of the problems
and solutions which are discussed here have already been
discussed in the context of the RD45 [20] project at CERN.
The replica consistency problem is very similar to the con-
sistency problem for (partial) database backups [5].

6.1 Possibly Inconsistent Copy (Consistency Level
-1)

The file replica is created using a trivial file copy con-
currently with ongoing write operations. For illustration let
us assume a file is located at a particular site and a database
management system or a file system operation takes place
on that file. While one user is updating the existing file,
another user is copying the file to another location. This
corresponds to the classical “dirty read” problem where a
reader is accessing a file while another one is writing to the
same file. A file copy corresponds to a read operation since
each copy instruction starts with reading the file context be-
fore sending it via a socket connection to another location
(as is the case for FTP).

The resulting file does not necessarily correspond to a
state of the original file at any point in time and internal
data structures may be inconsistent.

Clearly, this is of limited use to Grid end users. One
could neither guarantee that any user job does not suddenly
fail, nor could one exclude that it finishes by delivering in-
correct analysis results.

There are several well known ways to tackle this prob-
lem:

standard locking: obtain a file write lock - perform the file
copy - release the lock.

optimistic locking: In case of a very low probability of
lock contention on the file, one could alternatively
copy without getting a lock and test the modification
date of the file after the copy. In case there was a mod-
ification, one really gets a lock and retries.

snapshots: One could use the database or file-system ser-
vices to produce a consistent file snapshot (i.e. keep an
old version of the file until the copy process is finished,
but allow writers already to modify).

Any of these methods could be used to coordinate the ac-
cess between local clients and the replication system in or-
der to obtain an internally consistent file copy. This consis-
tency level can be supported by a Grid middleware system
but needs a mechanism for establishing locks to distributed
files. Consequently, our proposed consistency service needs
to support distributed file locking.

6.2 Consistent File Copy (Consistency Level 0)

At this consistency level, the data within a given file cor-
responds to a snapshot of the original file at some point in
time. In the case of a file which is controlled by a database,
the moment when the snapshot is taken may fall in the mid-
dle of one or more ongoing transactions. Again, we have
the dirty read problem.

In this case, it is still unclear if a file copy in this inter-
mediate state would be usable by a remote Grid user. The
complete state of relational or object database transactions
that are distributed over several data items consists of:

• the data in database files on disk

• the previous state of uncommitted changes as kept in
journal or log files

• the state of locks as kept in the database server

Copying only part of the transactional state, namely only
the database file, can therefore not assure consistency at the
replica site. One can make the simplifying assumption that
the complete state is contained only in the database file.
Therefore, in principle only in this case can one hope to
produce a consistent replica version which would be usable
by a different client at another site.

Depending on the database implementation, there are
again several mechanisms to obtain such a replica:

locks: one obtains a database read lock, depending on the
database to exclude other writers.

snapshot: one instructs the database to maintain for the du-
ration of the copy a transactionally consistent snapshot
(e.g. using a MROW (multiple-reader-one-writer) read
lock in an Objectivity based system). This would allow
a concurrent writer to continue its work.

Not surprisingly, the requirement of replicating a consis-
tent database state results in a similar situation as for simple
files, but now any locks or snapshots have to be integrated
with the database system instead of the file system.



6.3 Consistent Transactional Copy (Consistency
Level 1)

Each replica has been produced at a time when no write
transactions were active and can be used by other clients
without internal consistency problems. However, if a Grid
job requires more than just a single file, it may still experi-
ence inconsistency problems between these files. This time
they could take place in the object model, e.g. when a data
object in one file contains references to objects in another
file that has been deleted, updated or relocated in between
the two copy operations.

The following transaction sequence produces a consis-
tent main store, but inconsistent replicas containing “dan-
gling pointers”.

• starting point: File A contains object a, which points
to object b in file B. A job somewhere requires both
files to be replicated to it.

• t1: file A gets copied first

• t2: some local transaction removes a and b, resulting
in a new consistent state

• t3: file B gets copied

The result is the following. The main store is fine (a
and b are consistently deleted). The replica is broken, since
it contains object ”a” pointing to non-existing object ”b”
(1) since the DBMS might actually reuse the object ID of
the deleted object b, one might even end up with another
complete unrelated object (probably an instance of differ-
ent class now) (2) user code may still core dump or just
compute wrong results.

One way to work around the problem of “dangling ref-
erences” to objects in other files is to produce all replica
files as part of a single database transaction. Also simpler
approaches have been proposed, like removing cross-file
references as part of the replication procedure. Since this
approach may require a significant redesign of user appli-
cations to handle cross file references using other mecha-
nisms, it may not generally be applicable.

6.4 Consistent Set of Transactional Copies (Con-
sistency Level 2)

If the replicas have been produced as part of a single
database transaction, the main consistency problem left is
that replicated data might not be up to date, once the remote
node starts working on it. Since replica and original are not
part of a common database system, they are free to diverge.
This in particular poses problems if it is required to merge
the data changes from different sites to the same data. Note
that we assume that at each site an independent data store is

used that does not know about replicated sites. Therefore,
replica and original are on different sites and in a different
DBMS. In other words, a local DBMS only manages one
instance of a physical file. A replica of this file is stored at
a different site and managed by the local DBMS at this site.

6.5 Consistent Set of up-to-date Transactional
Copies (Consistency Level 3)

This is basically what is called a “replicated federation”
in Objectivity/DB where (1) a replica stays under the con-
trol of the database system and depending on the database
implementation (2) read/write locks may have to be nego-
tiated over the WAN. This often results in complex locking
and recovery procedures, i.e. locks need to be removed in
more than one replica location.

This is classical database replication as outlined in sec-
tion 5.1. The DBMS manages all replicas and the access to
data. In a Grid system, such a complex replication environ-
ment can only be attained if all data access operations use
a common interface and do not allow non-Grid access like
local fseek on files. This vision would mean that the Grid is
a distributed database management system on its own but it
may not be feasible for most of the Data Grid applications.

Read or write access to replicas is always atomic with
a conventional database transaction. This is a very strict
model and known as synchronous replication [11] which
might be useful for some meta data but also may impose
severe performance and usability constraints if applied to
event data which has data volumes up to several Petabytes.

7 Merging Policies with Consistency

We now relate the possible policies to the consistency
levels mentioned in the previous section and give a classifi-
cation of the consistency levels.

For read-only data, none of the conventional inconsis-
tencies illustrated in the previous section can occur. All the
files will always have a consistent state. No transactions are
required for update propagation to other replicas and maxi-
mum internal consistency can be achieved. However, there
is still the issue of meta-data consistency on file creation. In
Section 5 we have assumed that data already exists and have
discussed the update problem. However, we need to discuss
also the data creation step in order to catch all possible in-
consistent states in a Data Grid. Therefore, we categorise
the following two consistency problems and assign the re-
sponsibility to Grid services.

• data creation

• updates of existing data



As regards replication of read-only files, the only consis-
tency requirement is that files are created and have unique
names. This uniqueness criterion has to be checked and
guaranteed by the replica catalogue service and is a low
level consistency problem. If objects within a file need to
be exposed to the Grid, these objects need to be uniquely
identified too. Local uniqueness has to be guaranteed by
the DBMS.

Synchronous and asynchronous replication protocols
presented in 5.1 are a clear task for a higher-level con-
sistency service on top of the replica manager and the
replica catalogue service. Whereas synchronous replica-
tion approaches guarantee a strict consistency level 3, in
many cases it is enough if sites are updated asynchronously.
Asynchronous replication corresponds to consistency level
2 if multiple files contain certain associations or relevant
mutual information. In this case a collection of files is con-
sidered to be in a consistent state (see Section 5.2). If files
are independent of each other, asynchronous replication can
also relax the consistency level a bit more and just provide
level 1 consistency.

In general, level 1 consistency is the minimal consistency
provided by a database management system that uses trans-
actions.

Consequently, a replication (copy) operation always has
to be regarded as a database read transaction that can only
be executed successfully if a read lock is gained. A Grid
consistency service thus has the following steps for consis-
tent file replication:

1. gain read lock on all replicas of the same file in the
Grid (use the replica catalogue for finding out the file
locations).

2. transfer data securely

3. insert the file information into the replica catalogue

4. release read lock

A file update operation is more complex and needs write
locks on the file. Several mechanisms like a quorum have
been proposed [22] to reduce the amount of replicas to be
available in order to have a successful write lock on a set of
replicas.

8 Conclusion

We believe that having different consistency levels for
replication is useful and possible if knowledge about data
and use cases is available. We have described several differ-
ent consistency models (with their consistency guarantees
and their impact on the replication implementation) which
we could offer to the Grid user. However, we do not im-
pose any particular consistency constraints but leave it to

the user to decide which consistency model is adequate for
a particular application. Consistency guarantees expected
for meta-data should be included. Level -1 does not seem to
be applicable for many applications, and level 0 is probably
excluded at least for database controlled files.

It is useful to allow an application to specify (possibly
back-end specific) which level of consistency it expects for
the requested file set. Such high-level replication services
satisfy the need of a particular user community and make
use of lower Grid replication services like replica catalogue
management and optimised and secure file transfer.

In short, achieving even limited consistency produces
considerable additional complexity if the replication sys-
tem works directly on a data store containing multiple in-
terrelated writable files. In the near future we will continue
our analysis of feasible consistency models for writable data
and extend it to other “data exchange options” than just
database files. For read-only data, transferring database files
is of course simple and very effective.

Acknowledgement

We want to thank Fons Rademakers and Brian Tierney
for useful discussions on the paper.

References

[1] Divyakant Agrawal, Amr El Abbadi, R. Steinke. Epidemic
Algorithms in Replicated Databases. 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, Tucson, Arizona, May 12-14, 1997.

[2] Bill Allcock, Ann Chevernak, Ian Foster, Carl Kesselman,
Chuck Salisbury, Steve Tuecke. The Data Grid: Towards
an Architecture for Distributed Management and Analysis of
Large Scientific Data Sets. to be published in the Journal of
Network and Computer Applications.

[3] Bill Allcock, Joe Bester, John Bresnahan, Ann Chervenak,
Ian Foster, Carl Kesselman, Samuel Meder, Veronika Nefe-
dova, Darcy Quesnel, Steve Tuecke. Secure, Efficient Data
Transport and Replica Management for High-Performance
Data-Intensive Computing, 18th IEEE Symposium on Mass
Storage Systems and 9th NASA Goddard Conference on Mass
Storage Systems and Technologies, San Diego, April 17-20,
2001.

[4] Yuri Breitbart, Henry Korth. Replication and Consistency:
Being Lazy Helps Sometimes, 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Tuc-
son, Arizona, May 12-14, 1997.

[5] Dirk Düllmann. Workshop presentation on issues with
multiple synchronised federations,
http://wwwinfo.cern.ch/asd/rd45/workshops/july99/ Multi-
FD-Issues/sld001.htm



[6] European DataGrid Project, http://www.eu-datagrid.org

[7] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Niel-
son, Larry Masinter, Paul Leach, Tim Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, RFC 2616, June 1999.

[8] Ian Foster, Carl Kesselman. A Data Grid Reference Architec-
ture. In preparation. 2001.

[9] Globus Project. GridFTP - Universal Data Transfer for the
Grid. White Paper. September 5, 2000.

[10] Jim Gray, Andreas Reuter. Transaction Processing: Concepts
and Techniques. The Morgan Kaufmann Series in Data Man-
agement Systems, Jim Gray, Series Editor, 1993.

[11] Jim Gray, Pat Helland, Patrick O’Neil, Dennis Shasha. The
Dangers of Replication and a Solution. ACM SIGMOD In-
ternational Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996.

[12] GriPhyN Project, http://www.griphyn.org

[13] Koen Holtman, Prototyping of CMS Storage Management,
Ph.D. thesis, CERN, Geneva, Switzerland, 2000.

[14] Wolfgang Hoschek, Javier Jean-Martinez, Asad Samar,
Heinz Stockinger, Kurt Stockinger. Data Management in an
International Data Grid Project. 1st IEEE/ACM International
Workshop on Grid Computing (Grid’2000). Bangalore, India,
Dec 17-20, 2000.

[15] Matthias Nicola, Matthias Jarke. Increasing the Expres-
siveness of Analytical Performance Models for Replicated
Databases, International Conference on Database Theory
(ICDT’99), Jerusalem, January 1999.

[16] Objectivity Inc., http://www.objectivity.com

[17] Oracle: http://www.oracle.com

[18] Jon Postel, Joyce Reynolds. RFC 959: File Transfer Protocol
(FTP), October 1985.

[19] PPDG (Paricle Physics Data Grid), http://www.ppdg.net

[20] RD45 A Persistent Object Object Manager for HEP,
http://wwwinfo.cern.ch/asd/rd45

[21] Asad Samar, Heinz Stockinger. Grid Data Management Pilot
(GDMP): A Tool for Wide Area Replication, IASTED Inter-
national Conference on Applied Informatics (AI2001), Inns-
bruck, Austria, February 19-22, 2001.

[22] Heinz Stockinger, Data Replication in Distributed Database
Systems, CMS Note 1999/046, July 1999.

[23] Heinz Stockinger. Distributed Database Management Sys-
tems and the Data Grid. 18th IEEE Symposium on Mass Stor-
age Systems and 9th NASA Goddard Conference on Mass
Storage Systems and Technologies, San Diego, April 17-20,
2001.

[24] The Object Data Standard: ODMG 3.0 R.G.G Cartell and
Douglas K. Barry (editors), Morgan Kaufmann

[25] The ROOT System, http://root.cern.ch/


